
Parallel Lempel-Ziv-Welch (PLZW) Technique for
Data Compression

Manas Kumar Mishra#, Tapas Kumar Mishra*, Alok Kumar Pani#

#Department of Computer Science & Engg, Ghanashyam Hemalata Institute of Technology & Management,
Puri - 752002, India

*Department of Computer Science & Engg, Utkal University,
Vanivihar, Bhubaneswar - 751004, India.

Abstract- Data Compression is one of the most fundamental
problems in computer science and information technology.
Many sequential algorithms are suggested for the problem.
The most well known sequential algorithm is Lempel-Ziv-
Welch (LZW) compression technique. The limitation of
sequential algorithm is that ith block can be coded only after
the (i-1)th block has completed. This limitation can be
overcome by parallelizing the LZW coding technique.
Attempt has also been made to parallelize the LZ technique
[10]. But here is a new idea for parallelizing the LZW
compression technique. It uses a common memory to store the
encoded string parallely in a two dimensional array and stores
-1 at the end in each row which works as the marker.
Similarly each row is decoded parallely by different
processors. It is suitably implemented in SMP cluster using
MPI library function. The sequential algorithm takes θ(n)
where n is the size of text. But the parallel algorithm takes θ
(n/p) where p is the number of processor.

Keywords- Symmetric multi processor (SMP), message passing
interface (MPI), Lempel-Ziv-Welch (LZW)

I. INTRODUCTION

When we speak of a compression technique or
compression algorithm, we are actually referring to two
algorithms. There is the compression algorithm that takes
an input X and generates a representation Xc that require
fewer bits and there is reconstruction algorithm that
operates on the compressed representation Xc to generate
the reconstruction y. Based on the requirements of
reconstruction, data compression schemes can be divided
into two broad classes: lossless compression schemes, in
which Y is identical to X, and lossy compression schemes,
which generally provides much higher compression than
lossless compression but allow Y to be different from X.
Some of the lossless data compression techniques are
Huffman Coding, Arithmetic Coding and Dictionary
Techniques [12]. The drawback of Huffman coding and
Arithmetic coding needs two scan, one scan to find the
probability and the other to code the text. The dictionary
coding may be static or adaptive. Static dictionary coding
need the dictionary to be sent along with the compressed
data to the receiver which is an extra headache. Some of the
adaptive dictionary data compression technique are LZ77
[15], LZ78 [16] and LZW [14]. As mentioned in the
abstract, parallel LZ technique[10] uses dummy bits to
make the size of different encoded strings (made by each

processor) of equal lengths so that decoding can be done
parallely by dividing the size of encoded string with
number of processors. But in this paper we use -1 at the end
of each encoded string (made by each processor) which
works as the marker and by which we reduces the size of
the encoded string.

Cluster systems, which are groups of general-purpose
computers interconnected by networks, have become very
popular because of their cost/performance and scalability
advantages over other parallel computing systems, such as
centralized supercomputers. Although various types of
architecture of cluster systems exit, the symmetric
multiprocessor (SMP) clusters system has been in the
mainstream. In this paper, we propose a coarse grain
parallel algorithm for LZW compression technique. All
message transmissions are carried out by MPI library. In
the rest of the paper, section II and II(A) describe the
sequential algorithm and the coarse grain parallel algorithm
respectively. In section III, performance of the proposed
algorithm is compared with the sequential one. Section IV
gives the experimental results. Finally, section V concludes
this paper.

II. METHODOLOGY

The sequential encoding/compression algorithm is
shown below.
Input: a string/file - InputString
Output: The compressed string/file – encoded string

A. Algorithm encodelzw

1. Initialize the dictionary entry with single distinct
alphabet

2. Set tempstring=NULL
3. for(i=startindex;i<=endindex;i++) repeat step 4 to

7
4. append the character InputString[i]to the

tempstring
5. search the tempstring in the dictionary
6. If tempstring is found in the dictionary, set index =

dictionary index at which tempstring is present.
7. If not found store the tempstring in the dictionary.

Write the index value in the output encoded string.
Set tempstring=NULL and Set i=i-1.

8. store -1 at the end of the output string
9. Exit

Manas Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4038 - 4040

4038

B. Parallel encoding algorithm

Input: a string/file
Output: The compressed string/file
P: Number of processor

1. Initialize the dictionary entry with single distinct
alphabet

2. offset=(length of text)/(number of processor)
3. startindex=rank*offset;
4. if(rank==P-1) endindex=textlength-1;
5. else endindex=startindex+offset-1;
6. for rank=0 to P-1 pardo

a. encodelzw(startindex, endindex, rank)
7. store the result in the array encodestring[rank]
8. exit

Here all the processor works independently because each

processor operates on different data set. Each processor is
assigned a rank. If there are P processors, than the ranks are
0, 1, - - , P-1. A processor will compress what part of the
input string that depends on its rank and the total size of the
text. All Processors operate on same size of text (i.e. offset)
except the last processor which may have to process more
text. Each processor process a part of the whole string that
starts with startindex and ends with endindex. After
processing each processor write the encoded string into a
single two dimensional array. But the row number at which
the encoded string is written is different (that is same as the
rank of the processor). Each processor writes -1 at the end
which is used as the marker. This resolved the problem that
occurs in [10]

C. Sequential decoding algorithm

Input: Encoded integers
Output: The original text

 Algorithm decodelzw
1. Initialize the dictionary entry with single

distinct alphabet
2. Set tempstring=NULL
3. Scan an integer from the encoded string until

-1 is scanned and repeat step 4 to 11
4. If(dictionary entry in that index is not NULL)

do step 5 to 11
5. Write the dictionary entry in the output
6. Append the dictionary entry to the tempstring
7. For(k=0;tempstring[k]!=NULL; k++) repeat

step 8 to 11
8. Parttempstr[k]=tempstring[k];parttempstr[k+1

]=NULL
9. Search parttempstr in the dictionary
10. If not found in the dictionary store parttempstr

in the dictionary
11. Store the remaining part of the tempstring in

tempstring
12. Exit

D. Parallel decoding algorithm:

Input: Compressed string
Output: The original string

P: Number of processor
1. Initialize the dictionary entry with single distinct

alphabet
2. for rank=0 to P-1 pardo

decodelzw (encodestring [rank], rank)
3. exit

Here all the processor read the input string from different

address location hence all processor can run concurrently.
A processor decodes a string in the row number equal to its
rank. For Example if the rank of a processor is ‘0’ than it
decodes the row ‘0’ string of the two dimensional string.
Each processor read the string until -1 is reached.

III. PERFORMANCE EVALUATION & EXPERIMENT RESULT

In this section, we shall concentrate on performance
comparison between the coarse grain parallel algorithm and
sequential algorithm. Assume that n is the size of text and p
is the number of processors. The time complexity of the
sequential algorithm is θ (n). In our parallel algorithm each
processor operates on n/p data size requiring θ (n/p) time
complexity. The communications only need θ (1)
operations.

We implement the proposed algorithm using C and MPI
library. Our experiment environment is 8 nodes cluster with
each of 2.1 GHz Intel Core2duo with 4GB RAM running
under Red Hat Linux. Nodes are interconnected with one
Gigabit Ethernet switches. We tested our algorithm using 8
nodes and measured the wall clock time between the start
and the end of the algorithm as the running time. The
running time includes the execution time, the
communication overhead and reading the input data from a
file. The algorithm the different starting index and end
index to the different processor. All the processors execute
concurrently reading the string concurrently and writing the
output concurrently. The running times of both sequential
and parallel encoding algorithm are given in table no. 1.
And the running time of sequential and parallel decoding
algorithm are given in table no. 2.

TABLE 1

THE COMPARISON TIME FOR LEMPEL-ZIV-WELCH COMPRESSION

TECHNIQUE USING SEQUENTIAL AND PARALLEL ALGORITHM FOR 8

PROCESSORS.
TIME: IN MICROSECONDS.

Text Size
Sequential

Encoding Time
Parallel Encoding

Time

100B 148 64

200B 235 66

300B 329 76

400B 420 127

500B 512 101

1KB 991 162

2KB 1925 232

Manas Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4038 - 4040

4039

TABLE 2
THE DECODING TIME FOR LEMPEL-ZIV-WELCH COMPRESSION

TECHNIQUE USING SEQUENTIAL AND PARALLEL ALGORITHM FOR 8

PROCESSORS.
TIME: IN MICROSECONDS

Text Size
Sequential Decoding

Time
Parallel Decoding

Time

100B 87 57

200B 139 65

300B 186 72

400B 237 93

500B 287 129

1KB 554 151

The experiment is aimed at discovering how the text size

affects the performance of the system, as a function of the
number of hosts available for processing. In this
experiment the text size varies from 100B to 2KB. X-axis
represents size of text and Y-axis represents time. Fig1
shows the sequential vs parallel time for encoding and Fig2
shows sequential vs parallel time for decoding.

Fig. 1. Sequential vs Parallel time for encoding

Fig. 2. Sequential vs Parallel time for decoding

IV. CONCLUSIONS

We claim that a coarse grain parallelization method on
LZW compression technique can improve the existing
sequential algorithms. The experimental results gave the
quantitative indication to support our claim. The algorithm
also showed good scalability in the sense that increasing
the number of processors and text size simultaneously
maintains the speedup.

ACKNOWLEDGMENT

I render my acknowledgement to Prof. (Dr.) Sudarsan
Padhy for his advice, suggestions, inspiration and guidance
for this work. I am also thankful to Prof. (Dr.) Ajit Nayak
for his co-operation in installing MPI.

REFERENCES
[1] S. De Agostino, J.A. Storer, Parallel algorithms for optimal

compression using dictionaries with the prefix property,
Proceedings of Data Compression Conference DCC–92, Snowbird,
Utah IEEE Computer Society Press, 1992, pp. 52–61.

[2] D. Belinskaya, S. De Agostino, J.A. Storer, Near optimal
compression with respect to a static dictionary on a practical
massively parallel architecture, Proceedings of Data Compression
Conference DCC–95, Snowbird, Utah IEEE Computer Society
Press, 1995, pp. 172–181.

[3] G. E. Blelloch and J. Greiner. Parallelism in sequential functional
languages. In Proceedings of the Symposium on Functional
Programming and Computer Architecture, pages 226–237, June
1995.

[4] G. E. Blelloch. Programming parallel algorithms. Communications
of the ACM, 39(3):85–97, Mar. 1996.

[5] Faller. An Adaptive System for Data Compression. In Record of the
7th Asilomar Conference on Circuits, Systems, and Computers,
pages 593–597. IEEE, 1973.

[6] R.G. Gallager. Variations on a theme by Huffman. IEEE
Transactions on Information Theory, IT-24(6):668–674, November
1978.

[7] M.E. Gonzalez Smith and J.A. Storer, Parallel algorithms for data
compression, J. ACM 32 (1985) (2), pp. 344–373.

[8] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-
memory machines. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A: Algorithms and
Complexity, pages 869–941. Elsevier Science Publishers,
Amsterdam, The Netherlands, 1990.

[9] Shmuel Tomi Klein and Y. Wiseman, Parallel Huffman decoding
with applications to JPEG files, Comput. J. 46 (2003) (5), pp. 487–
497.

[10] S.T. Klein, and Yair Wiseman, “Parallel Lempel Ziv coding”,
Discrete Applied Mathematics Volume 146, Issue 2, 1 March 2005,
Pages 180-191, 12th Annual Symposium on Combinatorial Pattern
Matching .

[11] D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms,
6:163–180, 1985.

[12] Khalid Sayood, Introduction to Data Compression, third edition,
Morgan Kaufmann Publishers.

[13] J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal
of ACM, 34(4):825–845, October 1987.

[14] T.A. Welch. A technique for high-performance data compression.
IEEE Computer, pages 8–19, June 1984.

[15] J. Ziv and A. Lempel. A universal algorithm for data compression.
IEEE Transactions on Information Theory, IT-23(3):337–343, May
1977.

[16] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory, IT-
24(5):530–536, September 1978.

Manas Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4038 - 4040

4040

